In this post I will talk a little bit about how python and R work with vectors. I am using python 2.7.13 and R 3.4.3, both 64-bit on a Ubuntu 16.04 and I am also using the free book called A Hands-On Introduction to Using Python in the Atmospheric and Oceanic Sciences by prof. Johnny Lin as a guide.

## Creating vectors

The first thing about a vector is how to create one. There are several ways to create a vector in R. For example, if one needs to create a logical vector:

``````a = vector(mode = "logical", length = 5)
b = c(FALSE, FALSE, FALSE, FALSE, FALSE)
c = rep(FALSE,5)
``````
```##  FALSE FALSE FALSE FALSE FALSE
##  FALSE FALSE FALSE FALSE FALSE
##  FALSE FALSE FALSE FALSE FALSE
```

or a numerical vector:

``````a = vector(mode = "numeric", length = 5)
b = c(0, 0, 0, 0, 0)
c = rep(x=0, 5)
``````
```##  0 0 0 0 0
##  0 0 0 0 0
##  0 0 0 0 0
```

The `vector()` function produces a vector of the given length and mode, the `c()` function is a generic function which combines its arguments and `rep()` function replicates the values in `x` also returning a vector.

In python we can use the `numpy` package which has lots of methods to create and manipulate arrays/vectors. Thus importing the package `numpy` and generating the same vectors in python:

``````import numpy as np
a = np.array([False,False,False,False])
b = np.full(4, False, bool)
print a
print b
``````
```## [False False False False]
## [False False False False]
```

or a numerical vector:

``````import numpy as np
a = np.array([0,0,0,0])
b = np.full(4, 0, float)
print a
print b
``````
```## [0 0 0 0]
## [ 0.  0.  0.  0.]
```

Why are they different? Remember the dynamical typing? Vector `a` is a vector of integers and `b` is a vector of float. The attribute `dtype` gives the data-type of the array’s elements:

``````c = np.array([0.0,0.0,0.0,0.0])
print a.dtype
print b.dtype
print c
print c.dtype
``````
```## int64
## float64
## [ 0.  0.  0.  0.]
## float64
```

## Indexing Vectors

One major difference between python and R is how they address the element in the vector. In python the element addresses start with zero, so the first element of vector `a` is `a`, the second is `a`, etc.

``````import numpy as np
d = np.array(range(1,5))
print d
print d, d
``````
```## [1 2 3 4]
## 1 4
```

In R the element addresses follows the ordinal value thus starting from one. Consequently the first element of vector `a` is `a`, the second is `a`, etc.

``````d = seq(4)
print(d)
cat(d, d, sep=" ")
``````
```##  1 2 3 4
## 1 4
```

## Be careful!!!!

Python and R have the same method `range()` but they do different things. In python `range()` returns a list containing an arithmetic progression of integers. `range(i, j)` returns $([i, i+1, i+2,\ldots , j-1])$ and the default is `i=0`.

``````f = range(5)
g = range(2,5)
print f
print g
``````
```## [0, 1, 2, 3, 4]
## [2, 3, 4]
```

In R the methods similar to `range()` are `seq()`, `seq_along()`, `seq_len()` (please check the R documentation to see the differences between them) which generates regular sequences. However the default starting value is `1`.

``````f = seq(5)
g = seq(2,5)
print(f)
print(g)
``````
```##  1 2 3 4 5
##  2 3 4 5
```

The method `range()` in R returns a vector containing the minimum and maximum of all the given arguments.

``````range(f)
range(5)
``````
```##  1 5
##  5 5
```

1. 